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Chaos thresholds of the z-logistic maps x,.;=1-al|x|* (z>1; t=0,1,2,...) are numerically analyzed at
accumulation points of cycles 2, 3, and 5 (three different cycles 5). We verify that the nonextensive
g-generalization of a Pesin-like identity is preserved through averaging over the entire phase space. More

precisely, we computationally verify lim,_ (S, av)(t)/t hme(ln av §>(t)/t— «» Where the entropy S,

=(1-ZpN/(g-1) (S;=-2;pInp,), the sensitivity to the initial condmom §—hmAx(O)H0Ax(z)/Ax(0) and
In,x= (x!79=1)/(1-¢) (In;x=Inx). The entropic index Gy <1, and the coefficient )\q,w >0 depend on both z
and the cycle. We also study the relaxation that occurs if we start with an ensemble of initial conditions
homogeneously occupying the entire phase space. The associated Lebesgue measure asymptotically decreases
as 1/¢@erV) (g.,>1). These results (i) illustrate the connection (conjectured by one of us) between sensi-
tivity and relaxation entropic indices, namely, ¢,.,—1=A4,(1-g;.,)*, where the positive numbers (A,,a,)

depend on the cycle; (ii) exhibit an unexpected scaling, namely, g5 (cycle n)=B,gt., (cycle 2)+€,.
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Boltzmann-Gibbs (BG) entropy and the corresponding
statistical mechanics generically require strong chaos for
their applicability and (well-known) usefulness. This type of
requirement was first used in 1872 by Boltzmann himself
[1]. Indeed, his “molecular chaos hypothesis” allowed him to
arrive at the celebrated distribution of energies at thermal
equilibrium now known as the Boltzmann weight. Today, we
know that this requirement essentially amounts, for classical
nonlinear dynamical systems, to having at least one positive
Lyapunov exponent. In the case of many-body Hamiltonian
systems, such a condition is satisfied when the interactions
are short ranged. Such systems typically exhibit three basic
exponential functions [2], namely, (i) the sensitivity to the
initial conditions diverges exponentially with time, (ii) physi-
cal quantities exponentially relax with time to their value at
the stationary state (thermal equilibrium), and (iii) at thermal
equilibrium, the probability of a given microstate exponen-
tially decays with the energy of the microstate. These three
exponentials of different, though related, nature can be sum-
marized in the following differential equation:

dyldx=ayy [y(0)=1], (1)

whose solution is y=e“* (the subindex 1 will become trans-
parent soon). Let us make explicit the point. The first physi-
cal interpretation concerns the sensitivity to the initial con-
ditions of, say, a one-dimensional case and is defined as

&)= lim Ax(r)/Ax(0), (2)
Ax(0)—0

where Ax(¢) is the distance, in phase space, between two
copies at time ¢. If the system has a positive Lyapunov ex-
ponent \,, then & diverges as £€=¢™!’. In other words, in this
case we have (x,y,a;)=(r,&,\;). The second physical inter-
pretation concerns the relaxation of some (characteristic)
physical quantity O(#) to its value O(%) at thermal equilib-
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0(1)-0()
rium. With the definition = 20)-0@)
Q=¢""", where 7 is the relaxation time. In other words, in
this case we have (x,y,a;)— (z,Q),—1/7). This relaxation
occurs precisely because of the sensitivity to initial condi-
tions, which guarantees strong chaos. Krylov was apparently
the first to realize [3], over half a century ago, this deep
connection. The third physical interpretation is given by p;
=¢ Pti| 7 (with Z= Ewle PEj), where E; is the eigenvalue of
the ith quantum state of the Hamiltonian (with its associated
boundary conditions) and p; is the probability of occurrence
of the i-th state when the system is in equilibrium with a
thermostat whose temperature is 7= 1/kf (Gibbs’ canonical
ensemble). In other words, in this case we have (x,y,a,)
—(Ei.Zp;,—P).
A substantially different situation occurs when the maxi-
mal Lyapunov exponent vanishes. In this case the typical
differential equation becomes

[y(0)=1; g e R], (3)

whose solution is y=e%", the g- exponential function being
defined as follows: ¢, [1 +(1-¢)x]"0-9) if the quantity be-
tween brackets is nonnegatlve and zero otherwise (ej=¢").
The sensitivity to the initial conditions is given in this case
by [4,5] &= ezqwt (sen stands for sensitivity; this expression

sen

stands in fact for the upper bound of &). In other words, we
have (x,y,q,a,)=(t,&,qsen.\ 4, ). The relaxatlon 1s typi-

140 (rel
rel

stands for relaxation). In other words, in this case we have
(x,y.q.a,)=(t,8,q,,,—1/7, ). For the long-standing
metastable states [7] that precede thermal equilibrium for
long-range interacting Hamiltonians, it is expected that [8]
p,-=e_ﬁ qui/qu (with Z, —Zwle star /) (stat stands for

stat s 9s1a

In other

we typically have

dyldx = a1

cally expected [6] to be characterized by Q= e

stationary). words in thlS case we have
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(x.y.q.a))=(E;,Z;  Pi-dsiar»—PBy,, ). For systems that are
at, or close to, the edge of chaos we typically have ¢,,,<1,
q,q=1, and g, = 1. For the BG case, where there are one
or more positive Lyapunov exponents, we recover the con-
fluence Dsen=Yrel=Ystar= 1.

The entire g-triplet should be either measurable or calcu-
lable for Hamiltonian (or even more complex) systems. And
indeed it has recently been measured in the solar wind [9].
However, the generic relation among these three ¢ indices is
still unknown. For dissipative systems such as, say, the
z-logistic map, no g, exists. Therefore, the problem reduces
to only two ¢ indices, namely, ¢,,, and g,,. Their generic
relation also is unknown. In the present paper, we provide
numerical evidence of such a connection.

Before entering into the details of the present calculation,
let us briefly review the connection with the entropy S, the
basis of a current generalization of BG statistical mechanics
referred to as nonextensive statistical mechanics [10]. This
entropy is defined as follows:

w

1- E o w
=TTy = 2pinUp) )
where the g-logarithm function, inverse of the g-exponential,
is defined as Inx= xl:; and  S,=Sgg
=-3!pin p;.

If we partition the phase space of a one-dimensional map
(at its edge of chaos) into W small intervals, randomly place
N initial conditions into one of those windows, and then run
the dynamics for each of those N points, we get, as time ¢
evolves, an occupancy characterized by {N,(1)} [}, N,(r)
=N]. With p(f)=N«(#)/N we can calculate S,(z) for any
value of ¢g. From this, we can calculate the entropy produc-
tion per unit time [11], defined as follows:

= lim lim lim S, (r)/z. (5)

t—oo W—o N—owo

‘]

It has been proved [12] that only K, is finite (K,=0 for ¢
>q,,, and K, diverges for ¢<g,,). Furthermore, if we con-
sider the upper bound of K, ~with regard to the choice of
the little window within Wthh we put the N initial condi-
tions, we obtain the Pesin-like identity K, =\, . Several
aspects of this problem have already been verified for vari-
ous one-dimensional unimodal maps [13-16], as well as for
a two-dimensional conservative map [17]. The influence of
averaging was recently studied [18]. It was verified that,
while the g-generalized Pesin-like identity is preserved, the
value of g, is changed into gi., (av stands for average). The
main goal of the present paper is to exhibit that a simple
relation exists between ¢i., and ¢,,; by making use of the
z-logistic map family defined as

X =1- a|xt|z (6)

<1;r=0,1,2,...).

In our simulations, we first check whether the ¢,,; values
corresponding to cycles 3 and 5 (denoted 5a, 5b, and 5¢) are
different from those of cycle 2 obtained in [6]. To accom-
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FIG. 1. Occupied volume as a function of discrete time. After a
transient period, which is the same for all N, values, the power-
law behavior emerges. For each case, the evolution of a set of
10Ny, copies of the system is followed.

plish this task, we analyze the rate of convergence to the
critical attractor when an ensemble of initial conditions is
uniformly distributed over the entire phase space (the phase
space is partitioned into Ny, cells of equal size) and we
found that, for all cycles that we studied, the volume W(z)
occupied by the ensemble exhibits a power-law decay with
the same exponent value for given z. As an example, the case
of cycle 3 for z=2 is given in Fig. 1. The same kind of
behavior is obtained for other z values and cycles, which
exhibits that ¢,,; does not depend on the cycle (see also Table
I). It is worth mentioning at this point that very recent exten-
sive calculations [19] showed that the ¢,,; values should in-
deed be slightly larger than the values reported in [6]. But,
since this is just a systematic shift for all z values, this would
have no relevant effect for any scaling function based on ¢,,,
values. Then we concentrate on the ensemble averages of the
sensitivity function &(r) by considering two very close points
[throughout this work we take Ax(0)=10"'?] and calculating
its value from Eq. (2). This procedure is repeated many times
with different values of x randomly chosen in the entire
phase space. Finally an average is taken over all In,&(¢) val-
ues. For cycles 3, 5a, 5b, and 5c, we obtain the behavior of
(In,&)(2) as a function of ¢, for various values of z. We then

deduce g5, by identifying the linear time dependence as il-
lustrated in Fig. 2. We verify that the ¢, and )‘qav values

sen

depend on both z and the cycle, whereas ¢,,; only depends on
z. Finally, to investigate the entropy production for the cycles
3, 5a, 5b, and 5¢, we use the same procedure as in [15] for
cycle 2 of the z-logistic maps. It is numerically verified that,
as seen for a typical case in Fig. 3, for each value of z, and
for each cycle, the finite entropy production per unit time
occurs only for a special value of ¢ which precisely coin-
cides with the one obtained from the sensitivity function. In
addition to this, we obtained K‘ ZU —)\fov , which clearly

broadens the region of validity of the usual Pesin-like iden-
tity [20].
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TABLE 1. z-logistic map family for cycles 2, 3, and Sa.

z Cycle a, don, Qrel Ngav Ko

175 2 1.355060. .. 0.37+0.01 2254002  0.26+0.01 0.26+0.02
1.75 3 1.747303. .. 0.92+0.01 225+0.02  0.48=0.01 0.47+0.02
1.75 5a 1.607497... 0.96+0.01 225+0.02  0.42+0.01 0.40+0.02
2 1.401155. .. 0.36+0.01 241+0.02  0.27+0.01 0.27+0.02
2 3 1.779818... 0.88+0.01 241+0.02  0.49+0.01 0.48+0.02
2 5a 1.631019... 0.93+0.01 2412002  0.42+0.01 0.40=0.02
25 1.470550. .. 0.3420.01 270+0.02  0.28+0.01 0.28+0.02
25 3 1.828863. .. 0.82+0.01 270+0.02  0.48+0.01 0.47+0.01
25 5a 1.669543. .. 0.88+0.01 270+0.02  0.38+0.01 0.37+0.01
3 2 1.521878... 0.32+0.01 2942002  029+0.02  0.29+0.03
3 3 1.86299. .. 0.78+0.01 2942002  0.44+0.01 0.44=0.01
3 5a 1.699440. .. 0.84=0.01 2942002  0.34+0.01 0.35+0.01
5 2 1.645533... 0.28+0.01 353+003  030+0.02  0.30+0.03
5 3 1.931072... 0.68+0.01 353+0.03  0.36+0.01 0.37+0.01
5 5a 1.773088. .. 0.730.01 353+0.03  0.27+0.01 0.25+0.02

Finally, for all cycles that we studied, we numerically

We also notice (see Fig. 5) an unexpected scaling behav-

ior, namely,

verified that a simple scaling relation exists between g, and
qre; (see Fig. 4), namely,
dreeycle n) =1 =A,[1 - g, (cycle W] (7)

where n=2,3,5a,5b,5c¢, the values of (4,,«,) being given
in the caption of Fig. 4; both numbers depend on the cycle.
For example, a,=5.1, n=2, and quickly approaches zero
when the cycle increases; A, also decreases when the cycle
increases. This kind of relation between these two ¢ indices
is seen here in a model system. It is clearly consistent with
the confluence expected for BG systems. This is to say, when
there is a positive Lyapunov exponent, we obtain g,,=q5,
=1.
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FIG. 2. Time dependence of (In,¢).

dien(cycle n) = B,gs,,(cycle 2) + €, (8)

with (e,,B,) given in the caption of Fig. 5.

Summarizing, we have discussed a paradigmatic family of
one-dimensional dissipative maps, and have shown that its
(averaged) sensitivity to the initial conditions and its relax-
ation in phase space follow a simple path. This path is con-
sistent with current nonextensive statistical mechanical con-
cepts, and considerably extends the validity of Pesin-like
identities. The sensitivity to the initial conditions is charac-
terized by ¢., <1, which monotonically approaches unity
with increasing cycle size (at least for the specific cycles that
we have studied here), and decreases with z. It is further

z=2; cycle-3
W=100000 K
154 N=1OW .
50000 runs . .
[ ]
u
. Ky g™ ~0.48 . . o

<S q>(t)

FIG. 3. Time dependence of (S,).
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FIG. 4.  Straight lines: g, (cycle 2)-1=13.5[1-¢{,

(eycle 2)T,  qralcycle 3)=1=4.6[1-¢" (cycle 3)]*%*,  and
gre(cycle 5a)—1=4.1[1-¢% (cycle 5a)]°%. Inset: All three cycles
5 —are shown  together: [g,(cycle 5b)-1=42[1-¢5,
(cycle 5b)]%%, and g, (cycle 5¢)—1=4.7[1-¢% (cycle 5¢)]>*].
Notice that the Boltzmann-Gibbs limiting case appears as a special

point attained for all cycles studied here.

characterized by )\ZZU , which exhibits a maximum as a func-

tion both of the cyglne size and of z. The relaxation is char-
acterized by ¢,,;> 1, which monotonically increases with z,
and does not depend on the cycle. This numerical study has
enabled us to exhibit two interesting relations, namely, Eqs.
(7) and (8). These results are expected to illuminate, among
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other things, the case of long-range-interacting Hamiltonian
systems, the situation of which is even more complex since a
third entropic index ¢, is expected (which would charac-
terize the energy distribution at metastable states). Analytic
approaches to the present scalings are certainly most wel-
come.
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